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ON THE JOINT APPLICATION OF CARTESIAN AND BIPOLAR COORDINATES TO
SOLVE BOUNDARY VALUE PROBLEMS OF POTENTIAL THEORY AND ELASTICITY THEQRY"

V.S. PROTSENKC and A.I. SOLOV'EV

Equations are obtained that connect harmonic functions with separated
variables in Cartesian and bipolar coordinates. These equations can be
used to investigate a number of new boundary value problems of potential
theory and elasticity theory for domains bounded by Cartesian and bipolar
coordinate system coordinate lines.

1. cConsider a plane domain whose boundary is formed by two intersecting circles. The
solution of internal boundary value problems for such domains (circular cresents) is found in
bipolar coordinates a«, f defined by the relations (2 > 0) [1]

r= ch;:!—l:osﬁ’ b= chis.':fms (- 00 Lol 00, — L P L) (1.9

The arcs of the circles forming the circular cresent are the coordinate lines f = const,
and pass through the point z = o-a,y = 0. The quantity P is measured by the angle between the
tangent to the arc at the point z =4, y =0 and the segment (-—a,a) of the z axis correspond-
ing to the value § = 0. Within the domain under consideration the coordinate @ varies between
the limits —oo and oo. Particular solutions of the Laplace equation in bipolar coordinates,
obtained by separation of variables and bounded as « —» #4-00, have the following form

A chAp - chAp N
€08 ashlﬁ' sin ashkﬁ (— oo <A < o)
Theorem 1. The following equations hold for —an<<f <<mn
shxgg“?“’ga: S C(x,r)shrﬁg"?““gdz (1.2)
sinkz A sinto
chhy c?s Ax _ cos Aa — S € (. 7)ch 1B c{.asm
sin Ax 0 A sinte
Ch1) = o 2D (4 — v, 2; 2ika) =

e ea® (1 + iT, 2; — 2ika)

The last identity follows from the Kummer transformation /2, 3/ for the degenerate hyper-
geometric function.

The boundary value problems for a c¢resent domain containing an infinitely remote point
are solved conveniently in bipolar coordinates ao. ¢

asho asing
ha—coss * I T he—coss
(—oolalx, —aowne >0

The quantity ¢ is measured by the angle between the tangent to the arc at the peoint r = g,

y =0 and the ray (a, ) on the z axis corresponding to the value ¢ = 0,

T ===
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Theorem 2. For —oo <y << oo the following equations hold

shxon“_’s "“n=sgny S A, s) e[ ”uds (1.3)
sin A -~ sin xs
ch o cos Ao _ 11 _ S B\, s)eriml cos zs]

sin Aa of < sin zs

A (A, 5) = ahe-in® (1 — i), 2; 2ise), B (A, s) = sgnsd (&, s)

Formulas (1.2) and (1.3) have been established by solving special boundary value problems
for the Laplace equation.

Let us present the derivation of the last formula from (1.2)., To this end, we consider
the following internal Dirichlet problem for a symmetric cresent G bounded by arcs of the
circles =B, and f = —B,.

Aw (2, ) = 0, w (2, 1:B,) = ch Ay sin Az — za™1 sin Aa 1.4)
asha a sin Py
(z= cha+cospy * Y= cha+ cosPy 0<ﬁ,<n)

Evidently, y—0, 2 =43, cosh AysinAzx — ze'sinda —0 as a—+4o. The solution of problem
(1.4) exists and is unique in the class (*(6)N € (G) and can be represented in the form
-
w (o, b)=S R (A, t) ch 1f sin ta dt
0

1
R(A, t)=%—cm' S p(A, a)sintzda
1
p (A, @) = ch Ay sin Ax — 2a7! 8in Aa
(the functions z==z(a, B, ¥y =y (x By) are presented in (1.4)).
On the other hand, the function

ch Ay sin Az — ze7l sin ke = C* (§) N € (6)

is a solution of problem (1.4) (z and y are defined by the relationships (1.1)). Because of
the uniqueness of the solution of problem (1.4) in the class C*(G) NC (6

o
S R (A, 7)ch P sin T dv = ch Ay sin Az — za™} sin Aa {1.5)
[}

everywhere in the domain G.

It is possible to start from (1.5) in any set EC G having at least one finite limit
point P e G when actually seeking the functions R\, 7). Setting B=0,—o<a<oo(y=0—s<
z<a), applying the Fourier sine-transform inversion formula, and integrating by parts, we
find after elementary reduction

o= e § (522) oo § (22" ] - 2pie
-a

a—2z K a—I at
Making the substitution =z=ay here, using the equation /3/
§ (1 =y (1 4yt e PV ay = 291 By ) PO (p, v+ p; — 2ip)
and the Kummer transfo;;ation, we have

M . i
R(h, %) = Spar e [@ (1 — i, 2; 20ha) + D (1 +iv, 2; 2iu)]_ls?}“ﬁ

Taking into account that the constructions carried out are valid for any value of B, in
the interval (0,n) and

. ¢ ch 1B sin ta sh o sin Ae z
ZslnAaS shmt 9= GhaToosp = o Sinhe  (IBI<m)
[}

we obtain the desired equality.

Representation of the function e #2Q (1 — ip, 2; 2ipa) in terms of the regular Coulomb wave
function /4/ enables us to write it in the form of the following series:

ema@ (1 —ip, 2; 2ipa) = ngl Ay, (p) (pa)n?

2pA — 4
MaE=1 a@)=p A= el
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AIt hence follows that the densities C (A, 1) and A4 (k,s) are real functions for real values
of A, s, 7T

Formulas (1.2) and (1.3) and their specific combinations are specially adapted to the
solution of boundary value problems of potential theory in the strip —b <{y<h (the half-
plane —b (y << oo} (A >0, #>0) with a crescent hole or inclusion ¢, < ¢ << 0'2, and in
particular, to investigating singularities of the fields being studied near the angular points
z = +a, y=0.

The following can be considered as initial results when solving the problems mentioned
in the strip —b gz h (the half-plane —b < h <C o) with the previous orientation of the
crescent hole or inclusion.

Theorem 3. For —n <P <« s the following equations hold

chtPeosta
shtfsin 1o

ch Az coshy ch Az
shizsinhyl | O

ch Az sinhy ¢
= \ G},
Hsh Az cos ;.yﬂ _‘S., *.7)

&P (1 — i1, 2; — 2ha)

=i §G(7~:,r)g

-3
sh tpcosta
ch tf sin T

G (?y, T) =

hm

Theorem 4. For |x | >a the following equations hold

o

chiof | 5
chieldindo=sgnz S a(&.,s)e%m s
[ Sntatbidied i ‘“"- vl
chic “ “1 u ¥ i cossy

—_ = \ b(A,s)e"le=l d
th e | €08 Ao 0 S A, s)e A B

a (A, s) = are®D (1 — ik, 2; —2sa), & (A, s) = sgnsa(d, s)

El et el
the 100

GMTY+G@RA, ~1), PG, 1) —FR—D)] a (A, s} + a (b —s), ila(d, s) — a (A, —s)]
are real for real values of A,s, and =.

2. as the simplest example of the application of the equations obtained we consider the
problem of antiplane deformation of a layer (—co<lz,z< o0, -0<y<d which is symmetric in
the r coordinate and a crescent profile weakened by a cylindrical channel (00 < 2 < 00, w00 <
& < 00, —0y < 0 < Tp) . Layer deformation is caused by shearing lcads applied on the faces y = +b
which are directed along and are constant on the lines y=-b,z==comst . It is known /5, &/
that in this case only the displacement w = w{z,y) along the z axis and the tangential stresses
(G is the shear modulus) can be considered to be different from zero

Tx: = Gowldz, Ty, = Gowldy

The system of equilibrium egquations reduces to one eguation which takes the form Aw =10

in the absence of mass forces.

Tat tha surface of the cvlindrical chann
Let the surface ©f the cylindrical <hann

o + o
problem into symmetric and antisymmetric problems in the y coordinate and consider the former
when the desired function w 1is even in the y coordinate. Then determination of the stress
and displacement fields in the body under consideration {taking into account the assumed
symmetry of the problem in the 2z coordinate also) reduces to solving a Neumann problem in the
plane domain D bounded by the lines y = - and the arcs of the intersecting circles ¢ =g

{a strip with a crescent hole)

be free cv+ vl Fpm ar o e Wea sana arate e

1
4 rLerna Qrces. we Separa whe

7 Jw .
Aw =10, == =0, == o= hE)n Al =1=) 2.1

Y% lg==o, ’ e PRt

t is assumed that the external forces applied to the layer boundary are equalized. This
s in this case in the condition

I
result

\ filz)dz =0 (2.2)

Ly

which is simultaneously alsc the necessary condition for the two-dimensional Neumann problem
{2.1} to be solvable.

We seek the solution of the problem in the class of functions satisfying the condition
of finiteness of the elastic strain energy /7, 8/ of the strip D (—co< z< oo, ~b<{y < b
weakened by a crescent hole —o,< 0 <06, The energy mentioned is stored in the domain Dbecause
of the work of the external forces which is naturally always considered to be finite /7, 8/.
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Therefore, the solution of problem (2.l) should be sought in the class of functions satisfying
the condition

(SDS) l(%)‘“*(z_:ﬂ drdy < (2.3)

Condition (2.3) completely closes the formulation of problem (2.1}, (2.2). Meanwhile,
the behaviour of the solution is determined exactly as |z|— o, as well as at the singularities
z == g, y= 0,

Without examining the formulation of general assumptions relative to the external loads,
we note the following. If the function f(z) is bounded and non-zero just in a finite interval,
or f;{z) is integrable in the interval {0,o) and #{{=0{E Yz~ o, 2> 1), then the construc-
tions performed here are valid and condition (2.3) holds.

We represent the harmonic function w in the form

o

w=S GI(A)(ch?.ycosM—-cosM)dl-!-S Hy (x) ch vs cos ta dv - const
[ 0

Taking account of the symmetry of the problem and the equations
f=n—oc{0<or)

o o o
-3—‘:- = S Gi(k)dl.St[C(?\., 1)+ C(h, — 1)} sh 1 cos re dv - S-:H; {rishrocosvadr
H 8 ]
oo = 4
Gw

= rammmasrca— (m@a(aiBE 0+ B~ ePasrza >0
) 8 0 ]

on satisfying the boundary conditions of the problem, we arrive at the relations
[

8h T (50w &

2z lamen vron —oa
[]

Hy(v)=

o0

~~Ab
G0 =i § B @B, D+ Ble, — A de -

8]
o

2 d
nd =% {fn@estear, mo=0
¢

Eliminating H; (1), setting G,{d) = A", (A) and applying the Kummer transformation, we obtain
an integral eguation after certain calculations (M, () is a Whittaker function /2/)

¢ A
wir={xa wnwa+rEE o> @4
13
Pt ¢ T8h T (% — &)
Kk uy=— 4ush'Ab S sh‘rcoshn'}'w(k’ u; T)dv

—rr

W, w7 = [My oy (2ina) + My, o, (= 2iua)] M, . (2ike)

To extract the principal part of the kernel X(z) as A+u-—oo and 0<o,<n/2 we apply
the equation

N
sh T {5 — 35} st (R Gp)
_;E.E;__"- =2sh [| 7] — 5)] Z}eﬂzmndﬂlt! + .._SE?‘T...‘I.)_ N0 {2.5)
=
the representation /9/
L
shnr o o dp
My s () Mg ) (B) = e/ af S 2T hlasfithp g (g ) “ehp (2.6)

—c0
and its resulting relationship
LY M dt = LB ~aspitno il
e S M, v, (@) Mg oy (B) 9T = e L& 2.7

—0

Taking account of the structure of the function Wi, u 7} and the ineguality |[J{n)]<t
we ocbtain by using the representation (2.6)

W0, u; 202y rishar (1 {2a VAR +1] (A, u20) (2.8)
It can be established that for any fixed o,(0<g,<n/2) the number N = N (o) and the

number o= @ (0,) {0 < 0 <26, are determined uniquely such that (2N 4 2) 0o = — ©o. The solution
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satisfying these conditions has the form

N={-£—;}-—1, m—_—a—zb-%-sco

Considering the number ¥ in (2.5) to have been selected in precisely such a manner, we
introduce the following notation

£l sh _
V (A, u) == S 3&1_5_%11%&2 W, w1 de=VE (h,u) ~ V@ (A, u)

-—r0

L4

T shr{n—q

VRO, u) = S a?i_—"’EE?r?J_O)' SRRSO W (4w Ty de
-

N o=
V& (A, u)szz S o b (v — ool em@neadt 3wy 1) dy

ns=( —oo

In conformity with the inequality (2.8), we have ($(x) is Euler's psi-function /3/)

VR s = oW1+ o) =9 (V 2 - o) [ VR L e VR

We write the function V@ (A, w) in the form

3
VR, u) = 2 3 T,
n=0 m=1
T Oy = S g ¢TERRIW (i ) L WAL w — D) dT

—o0

T, u) = — S *htm e~ @NOIT Yy (3 sty W, s — T} dT
0

T
T® (A, u)= -§ T £THIONT 1 (4w v) - W (A, u; — T)]dr
9
Taking account of the estimate {(2.8), we have

(90, u)|<—-—y—r—-—,t+2§: ey 1] (<N

Let o> 0. In this case
A {2n+2)0>0>0 2.9

[T, u);<-—n—r{2n}‘-%—)—c~[ll(2a¢xu)wi} O R N)

If w=0, then @N-+2 gy =n, 2n+ Do <n, n—{2n+20 >0and therefore, the estimate
(2.9) holds for 0<n<N-—1) (if N> 1). For @e=0 and n=N, we have
(2N 425y =, T (A, u) =22 Y Au [/ (2 Via) — 11 ey Tu)]
Now utilizing (2.7), we obtain the following representation for the quantities Y (R, w)

T (3, w) = Py (ot} + Pn (A, —u) + Pr{—h, u) + Pr{—h, —u)

9, 2a Y A
Thm e &‘i&;‘)c expla (A +u)cig{n+ 1) 3]/, (;"""“"““'m(,, o ‘)30)

Pk, )= -
Since (2N + 20, = 1 — 0 (0 < 0 < 20p), then
D<(r+ Do M2 N), otg(n-+1) 0,20
TO (4, u) ~ Pn (h, w) A+ u— 00, (n+ 1) 0y < 7/2)
and o
TO O, u) ~w—dayY Rl 2aV ) (A4 u— o0}
if (n+Da=n/2, i.e. o=0 for n=N.
The estimates obtained show that when 0<o,<n/2
V(A u) ~ Py (A, u) (A 4 u ~ 00)
For the value 6, = /2 the function V@, u) is found exactly

V(h u)=—2a Y Ru [ (20 VAR) — 71 (2a Y Ra)
Therefore, for 0< o,< nf2

—Rb
Kk u) ~ 1/ S u(}«-u)clgc.,{l(_z_a_@_) (A& ot e 00}

“3Since ~h Ab sin Gy

1 -l/ T a e - 2ra ctg YyGa (A — 00)
KM~V wxtins, <hab ©
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For the values mn/2< g,< n the method presented for obtaining the asymptotic form of the
kxernel X (A, u) is evidently inapplicable. We obtain the estimate of K (A, u) corresponding to
this case as X+ u—oo Dby starting from thea equation

ST —00) _ ingopil _ -miet y DI —%0) g
hra . f —en htse  °

1tilizing the inegualities

T1i1Z2ing

n
i!:-‘-?l <char, ¥ chnrgi (1:;{;, So > T)

and the estimate

shnr
I M_,_,:_‘:' i)y (is) i < ¥ w

L

resulting from the integral representation of the Whittaker function /3/

1
1 . shav : . s
My v i) = 5 is —2 S(1+t)*“(1~:)=t“e"-"*d:
-1

we have the following inegualities:

2
W s o) <t (2T 0,430 \ (2.10)

L4
£ 1 sht{n-— 6} ~oa,f1 . {Ba? R~ Sp)
{ S shay sh 13 ¢ Wik, w3 7)dr| < [ hutg 250

-

Furthermore, by using inequalities (2.8), {2.10) and sinh ar < sr cosh at we obtain

o0 8 2 A 13 ‘ :‘\-\ h
u shar
l S sh‘rm WA, u T) de I < aa S i ¥ gy -
S ]

©

Gy Fu U 2a VR + 1] ‘i‘r’" G < —— (4 VIR L ey ) 4] TV
a¥iu

PRI

We now examine the integzal

o
- .
8k, u) == S ;E;‘{:Ezm WHAW (A, i3 T)ds (R 4 20)
—t0

Setting 0, = nf2 + g, (0 < & < nf2) therein, taking account of the structure of the function
Wi, 1), Eq.{2.6); and integrating with respect to 1, to find

8k u) = 8y (hy u) -+ S (M —w)

181 (A —u)} << 20t Y Au
To estimate §;{(&, 8} we apply the method of contour integration. To this end we set
z=p-+ i and we examine the domain Q=1Q,\ 2, where @, is rectangular, {—R<p < R,0<8<n/2),
Q, is the semicircle (p* -+ &8 <yY, and >0, v n/d — g, y <R, v > 0.
We introduce the function

i 2ay/ du 1
Flay= —¢ ig(a+uicthz Iy ( s ) T EFT go‘lj 3

which is analytic in the domain Q@ and on the boundary I except the point z =i (a2 — g) & Q.
Applying the residue theorem to the integral of the function f(s) along the contour I and
passing to the limit as y -0, R ~ 0, we find

2 — 2a Y A
Si(h, u) = —?35?; Vi sk unge p (-:ZT“J",) +0 (/)

1% £
0% £

Therefore, for =#2<o,<n

X0 S ™ ¢ aoewoge, ;. { 22YVTE 1
=V T e i\ e ) T o0 |

(d —~ 1 - 00}

1./ 2 e
S A e b e £ mhactg 0,
Kot~V Fsms, w0 (o)
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The estimates obtained for the kernel KX (A u as A-+u—o show that (2.4) reduces to a
Fredholm equation (the kernel and free term are square-summable) by replacing the desired

function + (A} only in the case when &> actgl/y0,.
Geometrically, this condition means that the crescent contour should lie entirely in the

strip ~b<Cy<h
Transformation of (2.4} to a Fredholm eguation is achieved by the substitution, for

example .
Y1 (M) = RECE% g )

In certain special cases the kernel of the integral equation (2.4) is calculated in
closed form. For o,=n/3 it has the form

o= ) Tl ()t (4o

while for o¢,= n/2

T ™ - —
K\, uy= ‘%’VT ;;-I-E{I, Qe YRy — Ji(2a Y Ru)} >0

We explain the behaviour of the solution of the problem as p— o (p =2~y by consider-
ing, say, that

h(e) = ,J:L. A<e<d, 19@I<H, lin 9)=C<oo

In this case, from the condition
g Alz)dz =0
o

it follows that
2 f1—
ny ..._CSI_&E_S_".d,, H<e<?)

lim —e
by € T WIE

Therefore, p M =0RH{h—~0,1<e<?) and we have for es=1

G (A= CA 3+ g {A), ;m Ry =0 (A1) (A — 0, = const}

o

o
S Gy (A) (ch Ay cos Az — ¢0: ha) dA = S Gy (M) (cos Az — cox Aa) dA -
o 0

S Gy {8) {ch Ay — 1) cos Az dh = & In TgT L0} {psoa)
o

e=ClTT+OM, 5 —o{ =) —--=o(%~) {p—o0)

For e>1{ the singularity of the function & (A) at zero is integrable, and then

lim S Gy (A) (ch Ay cos Az — cos Aa) A = -—S G {k)cos hadh
preco & F

dw 1 dw 1
=0 (1), —&—-—:o(";), ‘g{=°<“;) {p— o0}
We now examine the antisymmetric problem when the desired function w is odd in the y
coordinate and
ow ;
Tl ”.d:b=fs (z},  fel{—z}==falz)
In this case the condition of statics is satisfied identically.
Representing the harmonic function w in the form

~ &
w = S Gy (M) sh Ay cos Ax dA -4 g Hy (1) sh t5 cos T dt
0 n
and satisfying the boundary conditions of the problem, we obtain the relationships

% o A
62 (%) = <517 S () [A@ M+ Ax— V] dr+ {%r(x—i).‘z?
&

o

—cg) € 2 ¢
Hym = 2= (o, ca n—ca—uia, ) =5 | fale)coshads
o o
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The question of obtaining a Fredholm integral equation of the second kind in the function
Gy(d) and the necessity of the condition b>»actg¥yo, in this connection is solved in exactly
the same way as in the case of the symmetric problem.

We also note that if the function f,({x) is absolutely integrable, then

g: (i)' 8w

1
Z= =\ "ay—=o<—;> {p—+ 00}
We investigate the behaviour of the shear stresses 1, = Gow/dy as we approach the angular
points of the crescent y=0,2=4a{a~ o). Taking into account the equation

—1
2o, FaREZL op =iz a)
we find
¢ ha—t {
..%'ﬂ’. o, ([ 50 ™ S ACy () cos Mdl+-9—0:;——- S TH, (1) cos va dv
(ame0) o 3

Now utilizing the expression for #, (1) and the evenness of the function *TIC{,1) — C{, 1)}
in T we obtain after certain manipulations

bd

ow chot —1 S +
—- = iAerp
F }’0'05)"" a-ﬂSLG.(Mcoskxdl.-i--——-T—-o AR * (@) 4

R," ()] Ga {A)d)
T teht(n—s, . . .
R,_i(a)g S TM‘D“ i, 25 2ika) ™ dv
Taking into account the asymptotic behaviour of the function ® (¢, v 25 which is entire
in the parameter ¢, as ¢-- 00, by applying the residue theorem we have

R&*(a)=(sio)i i(2»~1)m(1$3-‘—‘%‘;—-:’l, 2; _2a.a) x
Bl

exp i——%ﬁ] -—-ZZB\‘D(QZFn, 2; ~ 2ikg) %

na=}

Extracting the principal part R{f () as a— o0 (corresponding to the value =n=1), and
using the eguation .
@ (2, 2; ~2iha) = M @ (0, 25 —2ika) = 1

we arrive at the following deductions.
For o,<af2, the stresses v, at the angular points sz=4a Fy=0 of the domain D are
zero. When o= n/2 the stresses 7T, are bounded and

o0
lim 1, =26 { AGy(1) cos ha dr
wvka I?y:oo) H
For ¢,>n/2 the stresses 1, at the angular points of the domain D increase without limit
in absclute value, where
Ty f,,_o o~ {z e a) B0 (p g 6 = const)
(y=0)

The stress singularity-.clarified at the angular points of the domain D is maximal and
its order agrees exactly with the order of the singularity in the problem of the longitudinal
shear of a wedge —0, <0< 0y —~0 <2< 00, 0 r< 0o and problems on the torsion and bending of
rods with a section in the shape of a symmetric crescent /1, &/.

By analogous constructions it can be seen that in the problem symmetric in- the y co-
ordinate considered above, the stresses at the angles of the crescent are zero for 0< o< n

It follows from symmetry considerations that the results obtained simultaneously yield
solutions of the first fundamental and mixed problems of antiplane strain of a strip 0< y< b
with a segmental recess. This explains the absence of stress singularities at angular points
of the domain D in the symmetric problem and their presence in the antisymmetric problem. 1In
fact, the stresses in the first fundamental problem of antiplane strain in the neighbourhood
of an angular point with aperture angle g,<=x are bounded /6, 8, 10/. 1In the mixed prcblem
the aperture angle ¢,=n/2 delimits the angles for which the stresses tend to Zero as one

approaches the angular point (0, < n/2) from the angles for which the stresses increase without
limit (o, >n/2) /1, 6, 8, 10/.
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The scheme described for solving the antiplane problem symmetric in the z coordinate is
easily extended even to the case when a strip —b< y<h with a crescent hole —~o, < o<g, is
considered instead on the domain D. The harmonic function w» can be selected in the form

o o
w= S Gy {A) (ch Ay c0s Az — cos Aa) dA +S Ga (M) sh Ay cos Az dh -+ (2.10
0 0

«

Hy(r)chtscostadr -+ S Hp (t) sh T3 cos va dv + const
1

Se3g

and instead of one integral equation (2.4) a system of two integral equations of the second
kind in the functions ;(A) = AG; (d) (i =1,2) is obtained. Investigation of the behaviour of the
kernels of these equations for A+ u-oce 1is analogous to that presented above.

Everything relative to the problems that are symmetric in the z coordinate is carried over com-
pletely to problems antisymmetric in the # coordinate. In this case, cosiz in (2.11) must be replaced
by sinir and costa by sinTa.

Superposition of the solutions of the problems mentioned also enables us to consider
problems in which the given loads are functions of a general kind. Moreover, the equations
presented in Sect.l enable the Dirichlet problem and the fundamental mixed problems of anti-
plane strain to be investigated for the domains mentioned, which in combination with the
method of dual integral equations also enable intrinsically mixed (contact) problems to be
studied. We note that in a number of cases the need arises to insert a logarithmic term of
the form 2

Dy lrx;;_.—-‘j._T {By = const)
into the general solution.
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