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ON THE JOINT APPLICATION OF CARTESIAN AND BIPOLAR COORDINATES TO 
SOLVE BOUNDARY VALUE PROBLEb-lS OF POTENTIAL THEORY AND ELASTICITY THEORY* 

V.S. PRGTSRNKO and A.I. SOLOV'EV 

Equations are obtained that connect harmonic functions with separated 
variables in Cartesian and bipolar coordinates. These equations can be 
used to investigate a number of new boundary value problems of potential 
theory and elasticity theory for domains bounded by Cartesian and bipolar 
coordinate system coordinate lines. 

1. Consider a plane domain whose boundary is formed by two intersecting circles. The 
solution of internal boundary value problems for such domains (circular cresents) is found in 
bipolar coordinates a, 8 defined by the relations (a > 0) [II 

usha 
x= Y 

llsing 
cha+eos@ =_,,a+cos8(-00<a<00,--n,<B~) (1-l) 

The arcs of the circles forming the circular cresent are the coordinate lines fi = const, 

and pass through the point x = +a, y = 0. The quantity $ is measured by the angle between the 
tangent to the arc at the point 5 = a, y = 0 and the segment (-a,a) of the x axis correspond- 
ing to the value $ = 0. Within the domain under consideration the coordinate a varies between 
the limits -co and 0~. Particular solutions of the Laplace equation in bipolar coordinates, 
obtained by separation of variables and bounded as a-&-w, have the following form 

Theorem 1. The following equations hold for -Tc < fi < n 

C&t) =&- e-""cD(i - iz, 2; 2iha)s 

ba 
sh C&Q (I _t it, 2; - 2&a) 

The last identity follows from the Kummer transformation 12, 31 for the degenerate hyper- 

geometric function. 
The boundary value problems for a cresent domain containing an infinitely remote point 

are solved conveniently in bipolar coordinates a. cI 

naha nrinc 
x= cha-toss ’ !f= eha-cos: 

(-ca<a<?o,--s<u<s,'a>OI 

The quantity o is measured by the angle between the tangent to the arc at the point x = a, 

y = 0 and the ray (a, m) on thexaxis corresponding to the value (5 = 0. 

l Prikl.Matem.Mekhan.,48,6,973-902,1984 
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Theorem 2. nor -OO (y ( 00 the following equations hold 

(1.3) 

A (h, s) = ah+=oQ, (1 - ii, 2; 2&z), B (a, s) = sgnd (A, S) 

Formulas (1.2) and (1.3) have been established by solving special boundary value problems 
for the Laplace equation. 

Let us present the derivation of the last formula from (1.2). To this end, we consider 
the following internal Dirichlet problem for a symmetric cresent G bounded by arcs of the 
circles 5= PO and @= -PO. 

Aw (a, PI = 0, II) (a, f&) = ch 4 sin k - m-1 sin ho 
osha 

== 
lzsing, 

cha+cosb ’ y= cha+c&b “<fben 

(1.4) 

Evidently, y-8, r=*a, cash LysinA.z--a-‘sinJ.a-0 as a-&m. The solution of problem 
(1.4) exists and is unique in the class O(G)n C@) and can be represented in the form 

w(a, ~)=fR(X,r)cb+sinradr 

0 

R (A, 7) = -+ & 5 p (5, a) sin za da 
0 

p (A, a) = ch Ay sin IS - t& sin Au 

(the functions z= ~(a,5~),~ = ~(a.&) are presented in (1.4)). 
On the other hand, the function 

ch kg sin AZ - ~a-1 sin lie E 0 (G) n C @) 

is a solution of problem (1.4) (c and y are defined by the relationships (1.1)). Because of 
the uniqueness of the solution of problem (1.4) in the class 0 (G) n c 8) 

5 R (5, T) ch ~fi sin To1 dr = oh ky sin k - mr1 sin Aa (1.5) 
0 

everywhere in the domain G. 
It is possible to start from (1.5) in any set ECG having at least one finite limit 

point PE G when actually seeking the functions R&T). Setting B=O,-co<a<m(~=O,-a< 

2 < 4, applying the Fourier sine-transform inversion formula, and integrating by parts, we 
find after elementary reduction 

Making the substitution z= ay here, using the equation /3/ 

!,(I -y)V~1(1+y)‘~1e~‘~dy=2V~LL~1B(v, ~)&W(p, v+p; -lip) 

and the Kummer transformation, we have 

R(h, T)= y& e+= [@( 1 - iT, 2; 2ih)+ @(I -j-it, 2; 2iho)]-~* 

Taking into account that the constructions carried out are valid for any value of p0 in 
the interval (0,s) and 

2sin?.a 
s 
ch 7p sin Ta 

dr = 
shasink 

shnr cha+cos5 =+sinlio (IBl<s) 
0 

we obtain the desired equality. 
Representation of the function e-igo(D (1 - ip,2; 2ipa) in terms of the regular Coulomb wave 

function /4/ enables us to write it in the form of the following series: 

+fiQ (1- ip, 2; 2ipa) = ngl A,, (p) (p)n-l 

A,(p)=-l, AzW=_p, A,(p)= 
2P4-1 (P) - A,_%(P) 

n(n-1) (n > 2) 
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It hence follows that the densities C&T) 
of h, s. r. 

Formulas (1.2) and (1.3) and their specific 
solution of boundary value problems of potential 
plane -b <y< 00) (k> 0, b > 0) with a crescent 

. _ 

and A (h,s) are real functions for real values 

combinations are specially adapted to the 
theory in the strip -b,<y<k (the half- 
hole or inclusion a, < a< aI, and in 

particular, to investigating singularities of the fields being studied near the angular points 
x=-&a, y =o. 

The following can be considered as initial results when solving the problems mentioned 
in the strip -b <x < k (the half-plane -b ,<h< w) with the previous orientation of the 
crescent hole or inclusion. 

Theorem 3. 

Theorem 4. 

For --n<p< 5c the following equations hold 

G (k, -d ~=5 *&@fi - ir, 2; - Zha) 

For 11 i > a the following equations hold 

Note that the functions 

G (h, z) + G (a, -T), i IG (A, z) - G (ii,---r)i a (h, s) 4" a (h, ,-s), i [a(X,s) - a (h, -s)l 
are real for real values of J", $3 and T. 

2. AS the simplest example of the application of the equations obtained we consider the 
problem of antiplane deformation of a layer (-CO<X.Z< m,--b<y<b) which is symmetric in 
the z coordinate and a crescent profile weakened by a cylindrical channel (--a,<z<m,--pa< 
a<=%--o,<o<u*). Layer deformation is caused by shearing loads applied on the faces y-&b 

which are directed along and are constant on the lines y=fb,t=coa& . It is known /S, 61 
that in this case only the displacement w= ~(fr,y) along the z axis and the tangential stresses 
(G is the shear modulus) can be considered to be different from zero 

~~~ =: Gadaz, rvz = Eawiay 

The system of equilibrium equations reduces to one equation which takes the form dw= I? 
in the absence of mass forces. 

Let the surface of the cylindrical channel be free of external forces. We separate the 
problem into symmetric and antisymmetric problems in the y coordinate and consider the former 
when the desired function w is even in the 9 coordinate. Then determination of the stress 
and displacement fields in the body under consideration (taking into account the assumed 
symmetry of the problem in the z coordinate also) reduces to solving a Neumann problem in the 
plane domain D bounded by the lines Y ==&h and the arcs of the intersecting circles 0 :-= * 40 
(a strip with a crescent hole) 

+W 

i 

aw 
hw=O, 77 = 0. It (- xl = i1t4 (2.1) 

0=*0, d!l i 9=*6 = * fl fr). 

It is assumed that the external forces applied to the layer boundary are equalized. This 
results in this case in the condition 

51 fl (r) d.2 = 0 (2.2) 

which is simultaneously also the necessary condition for the two-dimensional Neumann problem 
(2.1) to be solvable. 

We seek the solution of the problem in the class of functions satisfying the condition 
of finiteness of the elastic strain energy /7, 8/ of the strip D (--m < I “; r), --h .< y < bl 

weakened by a crescent hole --o,<o<o,. The energy mentioned is stored in the domain Dbecause 
of the work of the external forces which is naturally alwaysconsidered to be finite /7, 3,'. 
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Therefore, the solution of problem (2.1) should be sought in the class of functions satisfying 
the condition 

(2.3) 

condition (2.3) completely closes the formulation of problem (2.1)‘ (2.2). Meanwhile, 
the behaviour of the solution is determined exactly as Iri-m, as well as at the singularities 
z=fa,y=O. 

Without examining the formulation of general assumptions relative to the external loads, 
we note the following. If the function fi(z) is bounded and non-zero just in a finite interval, 
or It(z) is integrable in the interval (0,~) and ~~(I)~O(~~-~)(~-~,E>,I), then the construc- 
tions performed here are valid and condition (2.3) holds. 

We represent the harmonic function u, in the form 

Eliminating a;(r), setting G,(k) -~-'tpI(U and applying the Kummer transformation, we obtain 
an integral equation after certain calculations (ML,.(r) is a Whfttsker function f2/) 

w(L u; T) = r~~,,.,*(2~uca) +Afj,, ,(-2hrr)]af, ,,* (284 

To extract the principal part of the kernel R(?+,zs) as 
the equation 

bfu-too and 0<uos;Ls12 we apply 

N 
shsfx-5s) 

rhzso = 2sh 1171 in-so)] c 
,-@t1+1~a*~r~ + sh r (n - a 

shzoo 
$$-(eN+%fa*lTl 

t(2.5) 

W-0 

the representation /Q/ 

and its resulting relationship 

(2.7) 

Taking account of the structure of the function 
we obtain by using the representation (2.6) 

W(F.,u;t) and the inequality ]Jg 4) I< i 

lffr(L v; ~T)rQ2at/l;;f'ahnz[f~(2ayX;;)+i] (X,11-&0) (2.8) 

It can be established that for cony fixed 
number 0 = 0 (~7~) (0 G 0 < 2.3,) 

at) @<a~ <a& the number N = N(a,) and the 
are determined uniquely such that @N+ 2) %=I- 0. The solution 



716 

satisfying these conditions has the form 

Considering the number N in (2.5) to have been selected in precisely such a manner, we 
introduce the following notation 

In conformity with the inequality (2.8), we have (g(z) is Euler's psi-function /3/): 

We write the function Vj$(h,u) in the form 

T$+) (n, u) = - 
c 
b 

& e -(n+2rkaJr [W (A, u; z) + W (1, u; - T)] dr 

Taking account of the estimate (2.81, we have 

Let cp>O. In this case 

n -(2n -!- 2)0,>, w >0 (2.9) 

411 rrj;; 
JPfl, U)lS _ ti x (2n .+ 2)C, [r,(t~iz)-_l] (O.CnS”if 

If o= 0, then (2h'+ 2)0~= 1~. (ZZZ+~)~T~<X, z-(2n+2)oe>~ and therefore, the estimate 
(2.9) holds for O<nfN-I) (if N>l). For o=O and n=N, we have 

(2nr f 2)s.: Ic, T$j (A, II)= 2aJfz [I,(2n J/5)- I,(zU+)] 

Now utilizing (2.7), we obtain the following representation for the quantities T$’ (I, U) 

7‘2) (X, U) = P, (1, u) + Pn (1. -24) $- Pn (A, u) L Pn (4, --ul 

2n)CX-G 
P,(", LL) =- - >i" (R i-i)Oo f 

2aJE 
exPf"(h+u)ct~fn+2)~~11~ sia(,l_*)s, 

Since (2N + 2)~,= ir - o(OQ o<2ao). then 

0 < (n + I) 0" < xi2 (0 < n c N), ctg(n + I) 0" > 0 

T"' (?. U) - n ’ P, (1, u) (A. + u - m, (n $ 1) 0, < n/a 

and 
T~'(X.u)---~Vrj;;II(2aV'~) (ntt--m) 

if (nf*)u,,==z/2, i.e. 0-O for n=N. 

The estimates obtained show that when 0 < (J0 < n/2 

v 0.3 U) - P, 0.. U) (X + U - 00) 

For the value o,= n/2 the function V&U) is found exactly 

V(k, U)' -26~Gf11(2afi)- I,(zat/si;)] 

Therefore, for O<o,<n12 
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For the values n/2<o,<:n the method presented fox obtaining the asymptotic form of the 

kernel X(X, U) is evidently inapplicable. We obtain the estimate of K(b,u) corresponding to 

this case as X+-u--eo by starting from the equation 

shrfn--of sh+(n--(l&J) 

*h 100 
5 gf~-zG”m _ .-nvi ..j_ 

bh 7% 
,-?w 

ItiEzing the inequalities 

shxr 
- <:hnt, n7 c-*“~' chns<l i ) r2fl,oe7-& 

and the estimate 

I M*&, ‘,, w I < s qg- 

resulting from the integral representation of the Whittaker function /3/ 

we have the following inequalities: 

(5, u&O) 8 (2.10) 

Furthermore, by using inequalities (2.81, (2.10) and sinh nrd m cash m we obtain 

oi) ami 

IS 7 
- e-alrl VV‘ (X, u; 7) dr < 

sbn7 
shn% 

-c+ddzf 
m 

-0D 0 

We now examine the integral 
a . 

S (2, u) = 
s 

if--- P-?~~)@~ w (A, ic; 15) (Iz sh Ivi (L, u ;z 0) 
-ca 

Setting a,=nt2+~,, (O< E~<sIZ) therein, taking account of the structure of the function 
W&u;@, Eq.(2.6), and integrating with respect to r, to find 

S (h, U) = s, (5u) "t" 8, (A, --u) 

Using the inequalities I J1 (t)I <I, e$-+ p*&c. A we have the following estimate 

I&or; -u))<243G 

To estimate .S,(n,u) we apply the method of contour integration. To this end we set 
z=p+ ii5 and we examine the domain P== Q,\Q,, whexe Q, is rectangular, (-R < p < R, 0 < 6 < n/2), 
% is the semicircle (g9 + P <p), and 6 70. y < xl2 - a,, ‘y < R, y> 0. 

We introduce the function 

which is analytic in the domain P and on the boundary I' except the point z = i(nlZ- e,)eQ. 
Applying the residue theorem to the integral of the function f(z) along the contour I' and 
passing to the limit as ~'-0, R -00, we find 

Therefore, for 

K (1, I!) = 

(2. - IL-CO) 

li (h, ii) - 



The estimates obtained for the kernel K&U) as h-!-u-l, show that (2.4) reduces to a 
Fredhoim equation (the kernel and free term are square-summablef by replacing the desired 
function ql(A) only in the case when a> = etgV,o,. 

Geometrically, this condition means that the crescent contour should lie entirely in the 
strip --a<v<a. 

Transformation of (2.4) to a Fredholm equation is achieved by the substitution, for 
example 

In certain special cases the kernel of the integral equation (2.4) is calculated in 
closed form. For 0, = x/3 it has the form 

while for a0 = n/2 

we explain the behaviour of the solution of the problem as p-CO@ = I/-?) by consider- 
ing, say, that 

In this case* from the condition 

it foXlows that 

Therefore, PI 6) = 0 (X7 @ - 0,ige<2) and we have for ~=i 

4 (L) = C,W + g, (A), fii f&) = 0 (J‘---1) (I ."+ 0, C, = con*~f 
a? m 

s 
Cl(I)(chlycnsti--cc,: AU) dl= 

5 
G, (L) (cos Lz - co” la) dL .J- 

0 0 

For e> 1 the singularity of the function G,(L) at zero is integrable, and then 

tlnrS~*(b)(ehtEwhf--coukr)dX=-~G,(1)Mlxlndi 
p-e 0 

We now examine the antisymmetric problem when the desired function CD is odd in the y 
coordinate and 

In this case 
Representing 

the condition of statics is satisfied identically. 
the harmonic function 10 in the form 

a5 

and satisfying the boundary conditions of the problem, we obtain the relationships 

m 

Ha(r) = 
chr(ft--so) 

7 chro, y G,(1)[C(L ?)- C(L-- T)]dh , PI 0.) = $1 fs (2) COL hr cf.2 

0 D 
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The question of obtaining a Fredholm integral equation of the second kind in the function 
G,(k) and the necessity of the condition b>actgxfloo in this connection is solved in exactly 

the same way as in the case of the symmetric problem. 
We also note that if the function f,(r) is absolutely integrable, then 

We investigate the behaviour of the shear stresses zVz= G&dBy as we approach the angular 

points of the crescent B== O,x=fa(u- &to). Taking into account the equation 

we find 

+a ---co aa ha-1 
ag I ~=--r-- @-O&=0; Irt>a)) 

Wow utilizing the expression for IiS andthe evenness of the function rIG(h*r) - Gfh, -41 
in 7 we obtain after certain manipulations 

Taking into 
in the Parameter 

account the asymptotic behaviour of the function @(c,y;~) which is entire 
c, as E-*OC, by applying the residue theorem we have 

~~*~~)=~~~ ~~~2~-~)~~*~ a(2;S;l) ,2;--2% X ) 

exP 

Extracting the principal part R$ (a) as a-= (corresponding to the value as+ 1) , and 
using the equation 

Qt(2,2; -2&z) = c*u, @(0,2;--2&a)=l 

we arrive at the following deductions. 
For oo<ai2, the stresses sz at the angular points t-*a,3u-O of the domain D are 

zero. When u,, =Ef2 the stresses r= are bounded and 

For u+> xi2 the stresses rvz at the angular points of the domain D increase without limit 
in absolute value, where 

7, 
I 

The stress singularity.clarified at the angular points of the domain D is maximal and 
its order agrees exactly with the order of the singularity in the problem of the longitudinal 
shear of a wedge --o*<a<a,,-m<z<oo,O<r<oo and Problems on the torsion and bending of 
rods with a section in the shape of a symmetric crescent /l, 6/. 

By analogous constructions it can be seen that in the problem symmetric in the p co- 
ordinate considered above , the stresses at the angles of the crescent are zero for O<o~ix. 

It follows from symmetry considerations that the results obtained simultaneously yield 
solutions of the first fundamental and mixed problems of antiplane strain of a strip O< II< b 

with a segmental recess. This explains the absence of stress singularities at angular points 
of the domain D in the symmetric problem end their presence in the antisymmetric problem. IR 
fact, the stresses in the first fundamental problem of antiplane strain in the nefghbourhood 
of an angular point with aperture angle $0 f x 
the aperture angle 

are bounded /6, 8, fO/. 
a, = n/2 

In the mixed problem 
delimits the angles for which the stresses tend to zero as one 

approaches the angular Point (a,<n12) from the angles for which the stresses increase without 
Limit (a,>n/2) /l, 6, 8, lo/. 
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The scheme described for solving the antiplane problem symmetric in the r coordinate is 
easily extended even to the case when a strip --b<$< h with a crescent hole --a,<:o<o, is 
considered instead on the domain D. The harmonic function w can be selected in the form 

m 
W= 

5 
C,(b)(chlycos hr-~sha) d&f[ Ga(h) sh1yCOsh.z db -I- (2.11) 

T’ -O 
HI (t) ch zs cos ?a d? f 5 17% (T) sh ~3 co3 TCL dr + const 

0 0 

and instead of one integral equation (Z-41 a system of two integral equations of the second 
kind in the functions &(I)-Z<(I) (i -i,2) is obtained. Investigation of the behaviour of the 
kernels of these equations for Xfu-oo is analogous to that presented above. 

Everytbingrelativetotheproblems thatare synrmetric inthezcoordinateis carriedovercom- 
pletelytoproblemsantisynnaetric Fnthe xcoordinate. Intbiscase, coshsin (2.11) mustbereplaced 
by sin lu and eosre by sinra. 

Superposition of the solutions of the problems mentioned also enables us to consider 
problems in which the given loads are functions of a general kind. Moreover, the equations 
presented in Sect.1 enable the Dirichlet problem and the fundamental mixed problems of anti- 
plane strain to be investigated for the domains mentioned, which in combination with the 
method of dual integral equations also enable intrinsically mixed (contact) problems to be 

studied. We note that in a number of cases the need arises to insert a logarithmic term of 

the form a* 
&la--rr;- (& = const) z-T-y' 

into the general solution. 
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